
Copyright Smartlogic 2005-2024, All Rights reserved. Confidential

Continuous data streaming with the

user mode library / SLDMA device driver
Thomas Zerrer

February 2024

Copyright Smartlogic 2005-2024, All Rights reserved. Confidential

Typical Applications

Most applications are contained in the table above. If your targeted application is not listed there, choose the

use case which comes closest to your application.

Application DMA mode
Interrupt Source
(upstream case)

Video streaming without metadata
fixed size mode

(i.e. 1 video frame per DB)
Data channel

Video streaming with metadata, where metadata

is transferred before the frame as header

variable size mode
(i.e. data buffer contains a variable amount of data)

Data channel

Video streaming with metadata, where metadata

is transferred after the frame as footer

variable size mode
(i.e. DB contains a variable amount of data)

Meta channel

High speed data acquisition
Typically fixed size mode

(i.e. 1 fixed amount of samples per data buffer)
Data channel

Streaming of Ethernet packets (style A)

variable size mode for up- and downstream
(length of datapacket is sent as metadata with separate TDEST

after data)
Meta channel

Streaming of Ethernet packets (style B)

Upstream case : fixed size mode (but the actual fill level of the
data buffer is variable), length of packet is contained in a user

header before the payload. There is no separate meta data
channel

Downstream case : variable size

Data channel

Copyright Smartlogic 2005-2024, All Rights reserved. Confidential

Device Driver - Overview

Kernel Mode

User Mode

Functions

(Library)

P
C

I-
E

K
e
rn

e
l
D

ri
v
e
r

C
o
m

m
o
n
 A

P
I

User Mode

Host Computer

Linux or Windows OS

PCI Express Endpoint

Multichannel

DMA Engine

Properties:

• Smartlogic provides a comprehensive and easy to use user mode library (C++ class) that communicates

with the kernel mode driver

• DMA Memory is allocated by the kernel mode driver and mapped to user space. For Linux the user has the

choice to either work with kernel mode allocated DMA Buffers or hugepages.

• For Linux the amount of DMA Memory of the driver is adjustable at compile time. For Windows it is

adjustable in the registry.

User

Software

Application

DMA Memory

(contiguous)

Copyright Smartlogic 2005-2024, All Rights reserved. Confidential

Card to Host Transfers (Upstream / DMA Write)

Pointer Queue (PQ)

Pointer # 1

Pointer # 2

Pointer # N

Data buffers (DB)

Pointers to base

of data buffer

.

.

.

The pointer queue

(PQ) resides in host

memory
.

.

.

Properties:

• User informs user mode driver to map N data buffers of fixed size M to a specified DMA channel

• User mode library builds the initial PQ, transmits a copy of it to the address FIFO within the FPGA and

activates the EOF interrupt. The order of data buffers in the PQ can change over time, if the user returns

the pointers out of order.

• User mode library maintains 2 pointers :

write pointer : points to the data buffer that is currently written and increments when an interrupt for this

channel arrives

read_pointer : increments when the user has released a data buffer

Size M

Write Pointer

increments with EOF Interrupt

Read Pointer

increments with release of pointer

Size M

Size M

Copyright Smartlogic 2005-2024, All Rights reserved. Confidential

Function Overview for DMA Write (FPGA to Host)

User mode library Function Purpose Parameters
Return
Parameters

upstream_channel_setup
Build initial PQ, initialize DMA Engine including

interrupt
DMA Channel, Number of
DMA Buffers in Queue

Success / error code

upstream_channel_enable /

upstream_channel_disable
Enable / Disable a DMA channel DMA channel index Success / error code

upstream_multi_channel_enable /

upstream_multi_channel_disable

Enable / Disable several DMA channels
simultanously

DMA channel indices Success / error code

upstream_engine_enable /

upstream_engine_disable
Enable / disable the DMA Write Channel engine None Success / error code

upstream_channel_get_next_rx_buffer
Poll PQ for next filled buffer

(used for pull interface)
DMA channel, Pointer

Success / error code,
Pointer to DB and
optional to Metabuffer

upstream_channel_release_rx_buffer
Flag data buffer as processed and release

pointer to the PQ
DMA channel, Pointer to DB Success / error code

upstream_channel_set_callback

Register a user callback function, that is called,
when a data buffer is filled
(used for push interface)

DMA channel, callback
function,
user_data_structure

Success / error code

release_all_channels_and_buffers
Release and unmap all PQs and DBs for

upstream and downstream
None None

upstream_channel_suspend
Stop DMA upstream transmission for a specific

channel and clear address FIFO
DMA channel index Success / error code

upstream_channel_resume

Resume DMA upstream transmission for a
specific channel and fill address FIFO with RX

buffers
DMA channel index Success / error code

upstream_channel_get_statistics get statistic information (upstream) Channel index Success / error code

All these functions are contained in the C++ class SLDMA. The errorcodes and argument datatypes are defined in sldma.h. A demoproject is

available (sldma_test.cpp)

Copyright Smartlogic 2005-2024, All Rights reserved. Confidential

Device Driver : How to realize continuous streaming apps

Important for upstream applications (DMA Write) :

• The number of data buffers should be well calculated by the user, to have enough buffering capacity and

to insure no data loss

1. The recording depth should be high enough, so that data can be buffered during the time the SW might

have short processing problems*

2. The interrupt rate should not be too high*

• The maximum size of the data buffers can be selected individually for each DMA channel

• The user polls the dma write queue, processes the data buffer and returns the pointer. If he polls too

slow, he will loose data

• It is allowed to return the data_buffers out of order (i.e. not in the order as they were fetched)

 The returned pointer is stored in the PQ again and transmitted to the FPGA

• Two interface styles are available

 a) pull style interface : The user polls, if a new DMA Buffer is available

 b) push style interface : The user is able to register a callback function, that is called when a buffer is

 available

* For the DMA_Demo3 Design the interrupt rate is approximately 1 kHz and the recording depth is 32 ms when 8 DMA buffers are used per queue.

Copyright Smartlogic 2005-2024, All Rights reserved. Confidential

Working Upstream : PQ and DB Setup

Pointer Queue (PQ)

Pointer # 1

Pointer # 2

Pointer # 3

Pointer # 8

Data buffers (DB)

Pointers to base

of data buffer

.

.

.

.

.

.

Application specific preparations:

• Define the number of data buffers for each

data channel

 In this example this constant is set to 8

• Initialize the internal datastructure with a

 default setting by simply calling

 upstream_channel_setup_default_mapping()

• Define the parameters (channel number, buffer

size etc) by calling

upstream_channel_setup_mapping_fixed_mode

for fixed mode streaming or

upstream_channel_setup_mapping_variable_m

ode for variable streaming

 In this example the buffer size is set to 4 MB

Size 4 MB

Size 4 MB

Size 4 MB

Copyright Smartlogic 2005-2024, All Rights reserved. Confidential

Card Open (single endpoint)

In order to communicate with the FPGA, create an instance of the C++ class SLDMA:

SLDMA sldma1 (card_index1, number_of_channels);

…

Note : When working with only 1 card, the card index is 0

Open the card to get the driver handle:

driver_handle1 = sldma1.open ();

Important : The number of channels for upstream and downstream has to be identical, when instantiating

the SLDMA class with two parameters. If they are not the same, you can use the 5 parameter version:

SLDMA sldma1 (card_index1, number_of_upstream_channels,

number_of_downstream_channels, First_DMA_Memory, Number_of_DMA_Memories);

DMA Memory definition:

DMA memories should not be mixed up with data buffers. For Linux a DMA memory is one of the 4 MB

memories and for Windows it is one of the contiguous DMA memories defined in the registry (see here)

For guidelines on how to open the same card from 2 processes, refer to here

For guidelines on how to open the card in a multifunction or in a multi-card case, refer to here

Copyright Smartlogic 2005-2024, All Rights reserved. Confidential

Working Upstream : PQ and DB Setup with Plug & Play

// initialize internal structures with Plug and Play Table from FPGA

Bool enable_pnp true;

sldma.upstream_channel_setup_default_mapping (enable_pnp);

The FPGA designer can store all relevant parameters for DMA setup in the Plug and Play ROM Table

within the FPGA. If this ROM is configured correctly, it is sufficient to issue the following two function

calls:

// configure channel with PNP values

result = sldma.upstream_channel_setup (channel_index, buffer_count)

 s_axis_stream channel Number of DBs for this channel

Copyright Smartlogic 2005-2024, All Rights reserved. Confidential

Working Upstream : PQ and DB Setup without Plug & Play

// initialize internal structures without PNP

bool enable_pnp false;

sldma.upstream_channel_setup_default_mapping (enable_pnp);

// Supply channel informations manually with the fixed and variable mode fn’s

// in order to work with a datastream that contains data and metadata, use the

// variable mode. Here is an example :

result = sldma.upstream_channel_setup_mapping_variable_mode (

0, 0, 8, 0, 8, 4_MB, 4, SLDMA::EofMeta);

Channel TDEST for TDEST for s_axis_stream s_axis_stream data buffer Metadata IrqSource
Index Data Metadata channel (data) channel (Meta) size buffer size

// in order to work with a channel of that transmits fixed sized data, use the

// fixed mode. Here is an example :

result = sldma.upstream_channel_setup_mapping_fixed_mode (

1, 1, 1, 4_MB);

Channel TDEST for s_axis_stream data buffer

Index Data channel (data) size

Copyright Smartlogic 2005-2024, All Rights reserved. Confidential

Working Upstream : PQ and DB Setup

// In order to create the pointer Queue and to map the data buffers call the

// function upstream_channel_setup for each DMA channel (required for pnp or non

// pnp mode) :

result = sldma.upstream_channel_setup (channel_index, buffer_count)

 s_axis_stream channel Number of DBs for this channel

Copyright Smartlogic 2005-2024, All Rights reserved. Confidential

Working Upstream : Enabling DMA Engine and Channels

Once the PQ is setup for all channels, you enable the upstream engine by calling

result = sldma.upstream_engine_enable ();

The global enablement of the upstream is not sufficient for initiating DMA transfers. Each data channel

has to be enabled with:

result = sldma.upstream_channel_enable (channel_index);

It is possible to temporarily disable a upstream channel with

result = sldma.upstream_channel_disable (channel_index);

In order to avoid sideeffects, the user should only disable a channel when all RX data buffers are

transmitted to Host memory. In case several channels need to be enabled or disabled simulatanously,

please use the upstream_multi_channel_enable / upstream_multi_channel_disable functions.

Copyright Smartlogic 2005-2024, All Rights reserved. Confidential

Working Upstream : Accessing RX Data Buffers

Pointer Queue (PQ)

for a specific channel

Pointer # 3

Data buffers (DB)

Pointers to base

of data buffer

.

.

.

In order to get access to the next data buffer in

the RX (upstream) queue with DMA data from

the FPGA, call

upstream_channel_get_next_rx_buffer.

If a data buffer is available, the pointer to the

next data buffer in the RX queue for the

specific channel is returned.

In case there is no DB available a nullptr is

returned and the return code is „QueueEmpty“.

Size 4 MB

result = sldma.upstream_channel_get_next_rx_buffer (

channel_index, &buffer_ptr, &meta_buffer_ptr)

 DMA channel pointer to DB pointer to Meta (nullptr in fixed mode)

Working upstream : Returning RX data buffers back

In order to maintain continuous data streaming, the RX data buffers have to be returned back to the user

mode library (UML), when their content has been processed. If the user does not return them, DMA

transmission will stop when no DBs are available anymore. In order to prevent this condition, the RX DBs

have to be returned as fast as possible to the UML so that they can be re-used again.

This is done by calling the function upstream_channel_release_rx_buffer:

result = sldma.upstream_channel_release_rx_buffer (channel_index, &buffer_ptr)

 DMA channel pointer to DB

Copyright Smartlogic 2005-2024, All Rights reserved. Confidential

Important:

The UML does not check, if a certain DB was already returned. The user must take care, that the same DB

is not returned twice. Otherwise data corruption may occur, when the second entry of the DB is filled, while

the first entry is processed by the user application.

Copyright Smartlogic 2005-2024, All Rights reserved. Confidential

Working Upstream : Suspend / Resume Data Transmission

In case that the upstream DMA data transfer should be stopped for a while and restarted at a later time,

use the two functions upstream_channel_suspend and upstream_channel_resume. Please note, that

only a disabled channel can be suspended and that after a resume the channel must be enabled again.

result = sldma.upstream_channel_disable (channel_index);

result = sldma.upstream_channel_suspend (channel_index);

…

result = sldma.upstream_channel_resume (channel_index);

result = sldma.upstream_channel_enable (channel_index);

Upstream_channel_suspend clears the queue entries in the upstream address fifos.

Upstream_channel_resume refills the address fifos with new queue entries in order to ensure that no old

queue entries (prior to upstream_channel_suspend) are used.

Copyright Smartlogic 2005-2024, All Rights reserved. Confidential

Working Upstream : Releasing PQ and DBs

In case the application must be terminated, it is necessary to unmap and release all pointer queues. In this

case make sure to disable all channels and the DMA engine before releasing the DBs:

result = sldma.upstream_channel_disable (channel_index);

result = sldma.upstream_engine_disable(); /* do not issue this for MF /*

result = sldma.release_all_channels_and_buffers();

Please note that release_all_channels_and_buffers should only be used when the application is terminated. In

case that upstream data transmission should only be temporarily suspended, use the suspend/release

functions of the last slide.

*Note : If you are working in multifunction mode, please be aware that the DMA engine might also be used for

other functions. Since upstream_engine_disable has a global effect across all functions, it has to be carefully

considered, if the engine has to be disabled. For single function applications, it is recommended to disable the

upstream DMA engine as shown above.

Copyright Smartlogic 2005-2024, All Rights reserved. Confidential

Working Upstream : Registering Callbacks for RX Buffers

The user has two options in requesting the next RX data buffer (DB)

Option 1 :

User applications simply polls the PQ, if a new RX DB is available with

upstream_channel_get_next_rx_buffer

Option 2 :

User application can register a callback funtion that is called in case a buffer has been successfully

received. The registration of a callback function is done with:

Result = sldma.upstream_channel_set_callback (channel_index,

function_to_be_called, user_data_structure);

Important:

The callback function itself should be as short as possible. Copy or data processing tasks should be

carried out by threads which are activated by the callback function !

The callback function may not be called for each received data packet separately. Therefore the user is

required to call the upstream_channel_get_next_rx_buffer function within the registered callback function

until the data buffer is empty. See the sldma_test.cpp design for an example.

Copyright Smartlogic 2005-2024, All Rights reserved. Confidential

Registering User Interrupt Callbacks

User application can register a callback function that is called in case a specific user interrupt was

triggered. The registration of a callback function is done with:

Result = sldma.user_interrupt_set_callback (irq_number,

function_to_be_called, user_data_structure);

Important:

The callback function itself should be as short as possible. Copy or data processing tasks should be

carried out by threads which are activated by the callback function !

By default the User Interrupt inputs 9:0 of the FPGA IP core are mapped to irq_numbers 13 downto 4.

Copyright Smartlogic 2005-2024, All Rights reserved. Confidential

Registering Logging Callback

The user mode library provides additional useful debug outputs. In order to prevent printf statements in

the sldma class, the user can register a function that should be called in case a new message is

available.

Result = sldma.logging_callback_set (function_to_be_called, &sldma);

In order to clear the callback, issue

Result = sldma.logging_callback_clear ();

Note:

An example, how this callback is registered and used, can be found in the example design sldma_test.cpp

Copyright Smartlogic 2005-2024, All Rights reserved. Confidential

Host to Card Transfers (Downstream / DMA Read)

Pointer Queue (PQ)

Pointer # 1

Pointer # 2

Pointer # 3

Pointer # N

Data buffers (DB)

Pointers to base

of data buffer

.

.

.

The pointer queue

(PQ) resides in host

memory

.

.

.

Properties:

• User informs user mode driver to map N data buffers of fixed size M to a specified DMA channel

• User mode library maintains 2 internal pointers for each PQ :

 read pointer : point to the channel currently read and increments when an interrupt for this channel

 arrives

 write pointer increments when the user has released a data buffer

Size M

Read Pointer

increments with EOS Interrupt

Write Pointer

increments with trnasmit request

Size M

Size M

Copyright Smartlogic 2005-2024, All Rights reserved. Confidential

Card Close and Deletion of the SLDMA class

In order to close the add-in card and to delete the sldma1 class, the user has to include the following

code sequence:

{

SLDMA sldma1 (<card_index1>, <number_of_channels>);

driver_handle1 = sldma1.open ();

…

sldma1.close ();

}

Important :

The curly braces are important to ensure, that sldma1 is deleted automatically when the close is

executed. The curly braces ensure that SLDMA::~SLDMA() is automatically called. If you work without

curly braces, execute SLDMA::~SLDMA() manually.

Copyright Smartlogic 2005-2024, All Rights reserved. Confidential

Function Overview for DMA Read (Host to FPGA)

User mode library Function Purpose Parameters Return

downstream_channel_setup
Build initial PQ, initialize pagesize and

interrupt
DMA Channel, number
of Queue entries

Success / error code

downstream_channel_enable /

downstream_channel_disable
Enable / Disable the DMA channel DMA channel Success / error code

downstream_multi_channel_enable /

downstream_multi_channel_disable

Enable / Disable several DMA channels
simultanously

DMA channel indices Success / error code

downstream_engine_enable /

downstream_engine_disable
Enable the DMA Write Channel engine none Success / error code

downstream_channel_get_next_tx_buffer
request for an empty TX buffer out of

the PQ
DMA Channel, pointer

Success / error code,
Pointer

downstream_channel_release_tx_buffer
Trigger to transmit the data buffer and

relase data buffer to the PQ
DMA channel, Pointer,
data length

Success / error code

downstream_channel_set_callback

Register a user callback function, that is
called, when a data buffer is transmitted

(used for push interface)

DMA channel, callback
function,
user_data_structure)

Success / error code

release_all_channels_and_buffers
Release and unmap all PQs and DBs for

upstream and downstream
none None

downstream_channel_set_flex_core_block_length_

multiplier (only needed in flex core, not HCC core)

Set block length multiplier for individual
channels

channel, multiplier Success / error code

downstream_channel_get_statistics Get statistic information (downstream) channel Success / error code

All these functions are included in the C++ class SLDMA

The errorcodes and argument datatypes are defined in sldma.h

A demoproject is available (sldma_test.cpp)

Copyright Smartlogic 2005-2024, All Rights reserved. Confidential

Important for downstream applications (DMA Read) :

• The size of the data buffers should introduce a maximum interrupt rate of 1 ms per channel

• The maximum size of the data buffers can be selected individually for each DMA channel. It is possible to

transmit either the full size of the data buffer or only a user defined portion of the data buffer per transfer.

• The user can request data buffers out of the PQ as long as free pointers are available

• The user triggers a downstream transfer with a filled data buffer that has been previously requested. This

can be in a different order than the buffers were requested.

Copyright Smartlogic 2005-2024, All Rights reserved. Confidential

Working Downstream : PQ and DB Setup

Pointer Queue (PQ)

Pointer # 1

Pointer # 2

Pointer # 3

Pointer # 8

Data buffers (DB)

Pointers to base

of data buffer

.

.

.

.

.

.

Size 4 MB

Size 4 MB

Size 4 MB

Application specific preparations:

• Define the number of data buffers for each data

channel

 In this example this constant is set to 8

• Initialize the internal datastructure with a

 default setting by simply calling

 downstream_channel_setup_default_mapping()

• Define the parameters (channel number, buffer size

etc) by calling

downstream_channel_setup_mapping_fixed_mode

for fixed mode streaming or

downstream_channel_setup_mapping_variable_mode

for variable streaming

 In this example the buffer size is set to 4 MB

Copyright Smartlogic 2005-2024, All Rights reserved. Confidential

Working Downstream : PQ and DB Setup with Plug & Play

// initialize internal structures from the Plug and Play ROM table

bool enable_pnp true;

sldma.downstream_channel_setup_default_mapping (enable_pnp);

// In order to create the pointer Queue and to map the data buffers call the

// function downstream_channel_setup for each DMA channel :

result = sldma.downstream_channel_setup (channel_index, buffer_number)

 m_axis_stream channel Number of DBs for this channel

The FPGA designer can store all relevant parameters for DMA setup in the Plug and Play ROM Table

within the FPGA. If this ROM is configured correctly, it is sufficient to issue the following two function

calls:

Copyright Smartlogic 2005-2024, All Rights reserved. Confidential

Working Downstream : PQ and DB Setup without Plug & Play

// initialize internal structures with generic default values

bool enable_pnp false;

sldma.downstream_channel_setup_default_mapping (false);

// in order to work with a datastream that transmits a data buffer only partially,

// use the variable mode. Here is an example :

result = sldma.downstream_channel_setup_mapping_variable_mode (

1, 1, 4_MB);

Channel index m_axis_stream data buffer

 channel (data) size

// in order to work with a channel of that transmits fixed sized data, use the

// fixed mode for the specific channel. Here is an example :

result = sldma.downstream_channel_setup_mapping_fixed_mode (

1, 1, 4_MB);

Channel index m_axis_stream data buffer

 channel (data) size

Copyright Smartlogic 2005-2024, All Rights reserved. Confidential

Working Downstream : PQ and DB Setup

// In order to create the pointer Queue and to map the data buffers call the

// function downstream_channel_setup for each DMA channel(required for pnp

// or non-pnp mode) :

result = sldma.downstream_channel_setup (channel_index, buffer_number)

 m_axis_stream channel Number of DBs for this channel

Copyright Smartlogic 2005-2024, All Rights reserved. Confidential

Working Downstream : Enabling DMA Engine and Channels

Once the PQ is setup for all channels, you enable the upstream engine by calling

result = sldma.downstream_engine_enable ();

The global enablement of the downstream is not sufficient for initiating DMA transfers. Each data channel

has to be enabled with:

result = sldma.downstream_channel_enable (channel_index);

It is possible to temporarily disable a downstream channel with

result = sldma.downstream_channel_disable (channel_index);

In order to avoid sideeffects, the user should only disable a channel when all TX data buffers are

transmitted to the FPGA. In case several channels need to be enabled or disabled simulatanously,

please use the downstream_multi_channel_enable / downstream_multi_channel_disable functions.

Copyright Smartlogic 2005-2024, All Rights reserved. Confidential

Working Downstream : Requesting TX Data Buffers

Pointer Queue (PQ)

Pointer # 3

Data buffers (DB)

Pointers to base

of data buffer

.

.

.

In order to get access to the next data buffer in

the downstream queue, call

downstream_channel_get_next_tx_buffer.

If a data buffer is available, the pointer to the

next data buffer in the TX queue for the

specific channel is returned.

Now the user can fill this DB with application

specific data to be transferred to the FPGA

In case there is no free DB anymore a nullptr is

returned and the return code is „QueueEmpty“

Size 4 MB

result = sldma.downstream_channel_get_next_tx_buffer (channel_index, &buffer_ptr)

 m_axis_stream channel pointer to requested DB

Copyright Smartlogic 2005-2024, All Rights reserved. Confidential

Working Downstream : Initiate TX Data Buffer Transfers

Once the requested DB is ready for transmission, issue

result = sldma.downstream_channel_release_tx_buffer (channel_index,

buffer_ptr, size);

With this function call the DB will be transferred to the FPGA. After transmission the User Mode Library

will automatically take care that the DB is marked as free in the PQ and ready to be requested again.

The size argument is only needed for variable size data transmission. It can be omitted for fixed size

transmission.

Technical background information : The IP core will issue an interrupt when the data buffer is successfully

transferred to the FPGA. This interrupt is automatically handled by the User Mode Library.

Copyright Smartlogic 2005-2024, All Rights reserved. Confidential

Working Downstream : Releasing PQ and DBs

In case the application must be terminated, it is necessary to unmap and release all pointer queues. In

this case make sure to disable all channels and the DMA engine before releasing the DBs:

result = sldma.downstream_channel_disable (channel_index);

result = sldma.downstream_engine_disable (); /* do not issue this for MF */

result = sldma.release_all_channels_and_buffer ();

*Note : If you are working in multifunction mode, please be aware that the DMA engine might also be

used for other functions. Since downstream_engine_disable has a global effect across all functions, it

has to be carefully considered, if the engine has to be disabled. For single function applications, it is

recommended to disable the downstream DMA engine as shown above.

Copyright Smartlogic 2005-2024, All Rights reserved. Confidential

Working Downstream : Registering Callbacks

The user has two options in requesting the next TX DB

Option 1 :

User applications simply polls the PQ, if a new TX DB is available with

downstream_channel_get_next_tx_buffer

Option 2 :

User application can register a callback funtion that is called in case a buffer has been successfully

transmitted. The registration of a callback function is done with:

Result = sldma.downstream_channel_set_callback

(channel_index,function_to_be_called, user_data_structure);

Important:

The callback function itself should be as short as possible. Copy or data processing tasks should be

carried out by threads which are activated by the callback function !

The callback function may not be called for each transmitted data packet separately. Therefore the user

can try to get more than one TX buffer when the callback function is called. See the sldma_test.cpp

design for an example.

Copyright Smartlogic 2005-2024, All Rights reserved. Confidential

FlexCore : Optimizing Downstream Performance

The total read request is composed of several subrequests with a defined blocklength

The user can optimize the throughput of a m_axis interface by defining the blocklength of a subrequest.

Result = sldma.downstream_channel_set_flex_core_block_length_multiplier

(channel, multiplier);

Multiplier defines the blocklength of a subrequest

blocklength = MRRS * multiplier

The multiplier must be in the following range

non ext tag mode : 1 … 2

ext tag mode : 1 … 16

This function is useful when only a few m_axis

interfaces are in use that require a high

throughput

Extended Tag usage should be turned on for best

throughput

Due to its optimized architecture the HCC IP core

does not require this function.

0

200

400

600

800

1000

1200

0 1024 2048 3072 4096 5120 6144 7168 8192
M

B
yt

e/
s

Blocklength

Flexcore downstream performance
one active channel

G2-X4

G1-X4

G2-X1

G2-X2

G2-X4 G

Copyright Smartlogic 2005-2024, All Rights reserved. Confidential

Collecting Statistic Information

Two functions provide statistic information:

• upstream_channel_get_statistics

• downstream_channel_get_statistics

Provided information:

• packet_counter : Number of packets transferred / received

• queue_empty_counter : Counter how often the address FIFO reached empty

• merged_irqs_counter : Counts merged interrupts

• used_buffers : provides information how many data buffers were actually used

Copyright Smartlogic 2005-2024, All Rights reserved. Confidential

Working with multiple Cards (endpoints)

It is possible to work with the User Mode Library and more than 1 add-in card (PCIe endpoint) or when

using multifunction devices.

Create an instance of the C++ class SLDMA with the 5 parameter version

SLDMA sldma1 (card_index1, number_of_upstream_channels1,

number_of_downstream_channels1, first_DMA_Buffer1, number_of_DMA_buffers1);

SLDMA sldma2 (card_index2, number_of_upstream_channels2 ,

number_of_downstream_channels2, first_DMA_Buffer2, number_of_DMA_buffers2);

…

Note : Card_index = 0 opens the first visible card, 1 the next, etc. In order to ensure that each card

operates on its own dedicated/exclusive DMA Memory, it is important to add two more parameters to

inform the UML which DMA buffers are mapped to each card. For example set

 first_DMA_Buffer2 = first_DMA_Buffer1 + number_of_DMA_buffers1

Open each card to get the driver handle:

driver_handle1 = sldma1.open ();

driver_handle2 = sldma2.open ();

Copyright Smartlogic 2005-2024, All Rights reserved. Confidential

Accessing the Driver from two Processes

It is possible to open the driver two times, so that 2 separate applications (processes) can access the

driver for the same card or pcie function.

Create an instance of the C++ class SLDMA in each application with the 5 parameter version

Application 1 source code :

SLDMA sldma1 (card_index, number_of_upstream_channels1,

number_of_downstream_channels1, first_DMA_Buffer1, number_of_DMA_buffers1);

Application 2 source code:

SLDMA sldma2 (card_index, number_of_upstream_channels2 ,

number_of_downstream_channels2, first_DMA_Buffer2, number_of_DMA_buffers2);

…

Note : Card_index must be set to the same value for both applications. In order to ensure that each

application operates on its own dedicated/exclusive DMA Memory, it is important to add two more

parameters to inform the UML which DMA buffers are mapped to each application. For example set

 first_DMA_Buffer2 = first_DMA_Buffer1 + number_of_DMA_buffers1

There is a two process example design available which can be run with the DMA_Demo3 example

bitstream. The two examples are located in the folders sldma/test_rx and sldma/test_tx. Simply start both

applications and see how 100 packets are transmitted. The example is very short and easy to

understand. Further details are given in the source code.

Copyright Smartlogic 2005-2024, All Rights reserved. Confidential

Linux : Hugepage Support (1)

Hugepage support for Linux:

• DMA Buffers allocated by the Linux driver in kernel mode are limited to a size of 4 MB. Since only a

maximum of 256 4-MB buffers can be allocated, the total amount of DMA memory is limited to 1024 Mbytes.

In order to work with more contiguous DMA memory, the user has the option to work with hugepages.

• Hugepages are contiguous memory blocks that can be reserved at boot time. Once such a huge page pool

is reserved, the user can freely request or release hugepages at any time.

• The size of a Hugepage depends on the CPU system, but can be up to 1 GB

• In order to detect the supported hugepagesizes, type

 hugeadm --page-sizes-all

• In order to see the status of the hugepage pool type : hugeadm --pool-list

• When working with GB Hugepages, it is possible to work with data buffers greater than 4 MB

• Currently only a maximum of 4 Hugepages are supported

Copyright Smartlogic 2005-2024, All Rights reserved. Confidential

Linux : Configuring the Number of DMA Memories

Configuring the number of 4 MB memories / the number of CMA memories:

• In order to define the number of DMA Memories, edit SL_DEMO_MAX_BUFFER_COUNT in sl_demo.h

 #define SL_DEMO_DMA_MAX_BUFFER_COUNT 128

The allowed range for Linux is 16 to 256.

Copyright Smartlogic 2005-2024, All Rights reserved. Confidential

Linux : Hugepage Support (2)

How to setup and to work with hugepages instead of 4 MB DMA memoryblocks:

• Prepare your Linuxsystem with the following boot kernel parameters for 1 1GByte Page:

 default_hugepagesz=1G hugepagesz=1G hugepages=1

• In case you are working with two applications that open the driver in parallel, you have to reserve two

hugepages.

• Add the following line to your /etc/sysctl.conf

 vm.hugetlb_shm_group = 1000

• reboot your Linux system

• Set the define OPT_HUGEPAGE_SUPPORT in your makefile or pro file

• In your application call sldma.huge_page_pool_alloc (SLDMA::HugePageType_1G) for each hugepage you

want to use in order to instruct the UML that you want to work with hugepages. See sldma_test.cpp for an

example

• compile your application with the user mode library (sldma class)

• If you are working only with hugepages and multiple processes, each process will automatically operate

with ist own dedicated hugepage.

Now the user mode library will automatically use hugepages for all DMA channels. The user mode library

tries to map as many as possible channels and their data buffers to one hugepage.

Copyright Smartlogic 2005-2024, All Rights reserved. Confidential

Linux : CMA Memory Support

When CMA is enabled, the user can work with contiguous memories greater than 4 MB.

CMA is currently only enabled by default for ARM architectures.

For X86 CMA is disabled by default and needs to be enabled in the following way:

• Linux kernel configuration (make menuconfig):

 Memory Management Options

 Contiguous Memory Allocator

 -> Kernel config:

 Config_CMA=y

 Config_DMA_CMA=y

• Configure Grub (etc/default/grub):

 GRUB_CMDLINE_LINUX="cma=2G"

 update-grub

• recompile the kernel

• Configure sl_demo.h and set SL_DEMO_POOL_SIZE_EXTENDED to the desired memory size

• Important: It is not possible to use the entire reserved CMA memory with

SL_DEMO_POOL_SIZE_EXTENDED since Linux requires a little bit of management memory space out of

the CMA memory pool. If you encounter a kernel panic message, either reduce the number of cma memories

or increase the CMA memory area.

Copyright Smartlogic 2005-2024, All Rights reserved. Confidential

Linux : Optimizing DMA Performance

For latency sensitive applications, follow these guidelines on linux:

• open /etc/security/limits.conf (as root) and add the following entries:

 <account> - rtprio 99

 <account> - priority 99

 <account> - nice -20

 <account> - memlock 8336191488

• The account name is reported when you type „whoami“

• reboot your Linux system

Technical background:

Whenever an interrupt arrives on the CPU, a user mode thread has to be started that calls the user defined

callbacks. When this thread has only the default priority, it can be delayed by any OS operation with higher

priority. It has been observed that this delay can be in the range of 10-40 ms (machine configuration

dependent), which introduces additional latency and demands significant DMA buffering capacity to avoid

data loss.

In order to make use of higher priorities and to prevent the machine code of this thread to be swapped to

hard disc, several OS calls were added to the UML. In order to prevent that sldma has to be run under root

the entries above have to be present in limits.conf

As a result of these optimizations latency could be reduced by a factor of 8 on a Smartlogic lab PC

Important:

If the callback function starts other threads, the user is responsible to give these threads the right priority.

Copyright Smartlogic 2005-2024, All Rights reserved. Confidential

Windows : DMA Memory

For Windows the number and size of DMA memories can be selected with dedicated Registry entries.

They are located in :

HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Services\sldemo\Settings

Registry Key Name Function
Default
Setting

Comment

DmaBuffer00SizeMb Memory size of DMA Buffer 0 in Megabytes 4

Max value is 256 MB

for Windows

DmaBuffer01SizeMb Memory size of DMA Buffer 1 in Megabytes 4

DmaBuffer02SizeMb Memory size of DMA Buffer 2 in Megabytes 4

…

DmaBuffer14SizeMb Memory size of DMA Buffer 14 in Megabytes 4

DmaBuffer15SizeMb Memory size of DMA Buffer 15 in Megabytes 4

DmaBufferCount Number of needed DMA buffers : Range 1 to 64 16

DMABufferExtSizeMb Memory size of DMA Buffers 16-64 in Megabytes 4

DMABufferLowerAddressMask

Each bit specifies, if the associated DMA buffer

has to be allocated below (‚1‘) or above the 4 GB

boundary (‚0‘)

3 Set to 0

Copyright Smartlogic 2005-2024, All Rights reserved. Confidential

Windows : Configuring the Number of DMA Memories

Configuring the number of DMA Memories:

• In order to define the number of DMA Memories for Windows, edit SL_DEMO_MAX_BUFFER_COUNT in

 sl_demo.h and enter the value of DMABufferCount defined in the registry (see last slide)

 #define SL_DEMO_DMA_MAX_BUFFER_COUNT 16

The allowed range for Windows is 1 to 64.

Copyright Smartlogic 2005-2024, All Rights reserved. Confidential

User Mode Library : Example Designs

Example Design:

• An example program (sldma_test.cpp) is available that shows how the user mode functions are used

• With this example design it is very easy to integrate the user mode library into the user‘s specific software

application

• sldma_test –h shows the available command line switches and examples

• There is also an FPGA Reference Design available (DMA_Demo3) that works together with sldma_test.cpp

• Two further light weight example designs are sldma_test_rx and sldma_test_tx located in sldma/test_rx and

sldma/test_tx. These two examples show how two separate applications can access the driver (currently

only available on Linux)

Copyright Smartlogic 2005-2024, All Rights reserved. Confidential

For the FPGA Designer : Important IP Core Settings (I)

Upstream fixed size transfers :

If you are working with fixed sized data blocks upstream and you don’t want to take care of the s<nn>_axis_tuser signals, you

can set

DMA_Write_s_axis_tuser_not_driven_c : boolean := true;

This is especially useful when you are working with Vivado Blockdesigner, where you might have no direct access to these ports.

For data transfers of variable size however, you have to set this constant to false. This parameter can be found in DMA_pkg.vhd.

Downstream variable size transfers :

If you want to work with variable data sized blocks downstream, you have to activate the length FIFO in order to inform the IP

core on the actual transfer size of each dma buffer that is sent downstream.

use_Image_Format_fifo_c : boolean := true;

Image_Format_fifo_depth_c is the log2 of the actual length FIFO depth. Set this parameter to a value that is greater or equal to

twice the number of data buffers of a channel. If the calculated value is below 4, set it to 4.

e.g. : If the downstream PQ consists of 8 entries, the length fifo needs 16 entries. Therefore the use_Image_Format_fifo_c

constant is log2(16) = 4

Image_Format_fifo_BRAM_c selects, if you want to build the length FIFO with blockram (true) or distributed RAM (false).

Important is, that the length FIFO is actually 1 FIFO for all m_axis interfaces. As a rule of thumb you should set this parameter to

true, if you have more than 4 m_axis interfaces in use.

Copyright Smartlogic 2005-2024, All Rights reserved. Confidential

For the FPGA Designer : Important IP Core Settings (II)

Configuring MSI-X Interrupts:

It is highly recommended to work with MSI-X Interrupts wherever possible. In cases where it is not possible (e.g. FLEX core

users) to use MSI-X interrupt signaling, use the following guidelines to work with MSI interrupts:

Configuring MSI Interrupts:

It is important to configure the correct size of MSI messages.

The number of MSI messages can be selected with the parameter PCIE_MSI_CAP_MULTIMSGCAP_C in

pcie_ep_config_pkg.vhd (which is actually the log2 of the requested number of MSI messages) and the parameter

PCIe_MSI_Vector_Number in generate_pcie_xci.tcl when you are working with FPGA devices where a core has to be generated.

Always make sure that both parameters reflect the same setting.

Since the number of MSI messages is negotiated with the root complex of the CPU at boot time, it might be possible that you get

less MSI messages than requested. Therefore try to set the value in the recommended column.

* Although the User mode library can operate with only 1 MSI vector, it is recommended to set the number of MSI messages

according to the «minimum MSI message number required» column.

Use case
Minimum MSI message

number required
Alternate settings

Upstream only 8 32 or 1*

Downstream only 16 32 or 1*

Upstream and

downstream
16 32 or 1*

Copyright Smartlogic 2005-2024, All Rights reserved. Confidential

For the FPGA Designer : Important IP Core Settings (III)

Optimizing downstream throughput performance:

In order to maximize downstream performance, make sure to configure the following settings:

Activate Extended Tag usage:

If you are working with extended Tags, make sure, that the data fifo capacity is at least 8 kB (DMA_Read_Fifo_params_c in

dma_pkg.vhd).

 For simulation:

 Set PCIe_DEV_CAP_EXT_TAG_SUPPORTED_C (pcie_ep_config_pkg.vhd) to „TRUE“

 For Xilinx FPGAs:

 configure this in generate_pcie_xci.tcl (PCIe_Extended_Tag_Ena „true“). This ensures, that the IP core can work with a

 maximum of outstanding read requests.

 For Intel FPGAs:

 Configure this in the GUI of the HIP „Number of tags supported per function“ by choosing the maximum offered value

Completion Sorting (only needed, if you are working downstream)

For some systems (especially AMD CPUs and some Intel CPUs) it might be necessary to turn on the completion sorter.

Details on this feature can be found in the Application Note „AN_Completion_Sorting“ from Smartlogic. If you don‘t follow the

guidelines there, you might receive the data in the FPGA out of expected order.

Copyright Smartlogic 2005-2024, All Rights reserved. Confidential

About gstreamer

Gstreamer allows to display live video streams and is an open source video framework available for Linux

and Windows. The gstreamer framework can be easily integrated in new user applications without the need

to develop video functions.

Support for gstreamer

The user mode library is compatible for use with gstreamer 1.0

It has been successfully tested with Gstreamer Version 1.0.1.20.3 (Linux and Windows/mingw)

Example design:

• An example design (VHDL Source code and C++ Source Code) is available that shows how to interface the

Smartlogic IP cores with GStreamer

• With this example design it is very easy to understand the basic design principles and to build new custom

applications.

gstreamer support

Copyright Smartlogic 2005-2024, All Rights reserved. Confidential

Installing Gstreamer on Linux

Install the following packages

sudo apt-get install libgstreamer1.0-dev

sudo apt-get install gstreamer1.0-plugins-bad

sudo apt-get install gstreamer1.0-plugins-ugly

sudo apt-get install gstreamer1.0-libav

sudo apt-get install gstreamer1.0-qt5

sudo apt-get install libgstreamer-plugins-base1.0-dev

sudo apt-get install libgstreamer-plugins-bad1.0-dev

sudo apt-get install gstreamer1.0-plugins-base

sudo apt-get install gstreamer1.0-plugins-good

sudo apt-get install gstreamer1.0-tools

sudo apt-get install gstreamer1.0-x

sudo apt-get install gstreamer1.0-alsa

sudo apt-get install gstreamer1.0-gl

sudo apt-get install gstreamer1.0-gtk3

sudo apt-get install gstreamer1.0-pulseaudio

Copyright Smartlogic 2005-2024, All Rights reserved. Confidential

Installing Gstreamer on Windows

Gstreamer can be downloaded for Windows from : https://gstreamer.freedesktop.org/

The user has the choice to install MSVC or MINGW based versions of the Gstreamer framework

In any case make sure to do the following:

Install the runtime first and select the “custom” install

Select all modules manually and set to “install entire feature on local disc”

After the runtime install the development part of the framework in the same way (custom install)

After successful installation check the following:

The environment variable GSTREAMER_1_0_ROOT_X86_64 must point to the selected folder from the custom install

Add %GSTREAMER_1_0_ROOT_X86_64%\bin to your path variable

You can check your gstreamer installation by typing in a windows console

 gst-launch-1.0 -v videotestsrc ! autovideosink

or

 gst-inspect-1.0 videotestsrc

If this succeeds, your Gstreamer installation was successful

https://gstreamer.freedesktop.org/

Copyright Smartlogic 2005-2024, All Rights reserved. Confidential

Known Limitations

Currently the following limitations (as of February 2024) are known:

• Linux : Trying to allocate data buffers greater than 4 MB without using hugepages and without CMA

 enabled will result in a segmentation fault. Solution : Use hugepages instead or enable CMA support

• The user has to take care, that a DB is only returned one time back to the UML via

 upstream_channel_release_RX_buffer. If upstream_channel_release_RX_buffer is called multiple times in

 a row, data corruption will occur.

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 55

